Life cycle assessment (LCA) is a broadly used method for quantifying environmental impacts, and life cycle impact assessment (LCIA) is an important step as well as a major source of uncertainties in LCA. Characterization factors (CFs) are pivotal elements in LCIA models. In China, the health loss due to ambient PM2.5 is an important aspect of LCIA results, which, however, is generally assessed by adopting CFs developed by global models and there remains a need to integrate localized considerations and the latest information for more precise applications in China. In this study, we developed indigenized CFs for LCIA of health damage due to ambient PM2.5 in China by coupling the atmospheric chemical transport model GEOS-Chem, exposure–response model GEMM containing Chinese cohort studies, and the latest local data. Results show that CFs of four major PM2.5 precursors all exhibit significant interregional variation and monthly differences in China. Our results were generally an order of magnitude higher and show disparate spatial distribution compared to CFs currently in use, suggesting that the health damage due to ambient PM2.5 was underestimated in LCIA in China, and indigenized CFs need to be adopted for more accurate results in LCIA and LCA studies.