รายละเอียดเอกสาร

สิ่งแวดล้อม มลภาวะ ของเสีย

บทความ

สหรัฐอเมริกา

ACS

Design Insights for Industrial CO2 Capture, Transport, and Storage Systems

2024

10

Environmental Science & Technology Vol. 58, No. 33, August 20, 2024 p. 14608-14617

We present methods and insights for the design of CO2 capture, transport, and storage systems for industrial facilities with a case study focus on Louisiana. Our analytical framework includes (1) evaluating the scale and concentration of capturable CO2 emissions at individual facilities for the purpose of estimating the cost of CO2 capture retrofits that utilize various energy supply sources to meet parasitic demands; (2) screening to identify potential CO2 storage sites and estimate their capacities, injectivities, and costs; and (3) designing cost-minimized trucking or pipeline infrastructure connecting CO2 capture plants with storage sites, considering existing land uses, demographics, and a variety of social and environmental justice factors. Estimated levelized costs of capture at Louisiana’s 190 industrial facilities range from below $50/tCO2 to above $500/tCO2, depending on facility-specific features. We identified 98 potential storage sites with storage costs ranging from $8 to $17/tCO2. We find that in most situations, pipelines are the least-costly mode of CO2 transport. When industrial facilities in a region share pipelines, aggregate pipeline mileage and average transport costs are dramatically lower than without sharing. Shared pipeline networks designed to avoid disadvantaged communities require right-of-way areas compared to those for networks that transect such communities, but result in 25% higher average per-tonne transport cost.